
Mitigating Information Leakage Vulnerabilities with
Type-based Data Isolation

Alyssa Milburn†*, Erik van der Kouwe* and Cristiano Giuffrida*

†Intel *Vrije Universiteit Amsterdam, The Netherlands
amilburn@zall.org, {vdkouwe,giuffrida}@cs.vu.nl

Abstract—Information leakage vulnerabilities (or simply info
leaks) such as out-of-bounds/uninitialized reads in the architec-
tural or speculative domain pose a significant security threat,
allowing attackers to leak sensitive data such as crypto keys. At
the same time, such vulnerabilities are hard to efficiently mitigate,
as every (even speculative) memory load operation needs to be
potentially instrumented against unauthorized reads. Existing
confidentiality-preserving solutions based on data isolation label
memory objects with different (e.g., sensitive vs. nonsensitive)
colors, color load operations accordingly using static points-
to analysis, and instrument them to enforce color-matching
invariants at run time. Unfortunately, the reliance on conser-
vative points-to analysis introduces overapproximations that are
detrimental to security (or further degrade performance).

In this paper, we propose Type-based Data Isolation (TDI),
a new practical design point in the data isolation space to
mitigate info leaks. TDI isolates memory objects of different
colors in separate memory arenas and uses efficient compiler
instrumentation to constrain loads to the arena of the intended
color by construction. TDI’s arena-based design moves the instru-
mentation from loads to pointer arithmetic operations, enabling
new aggressive speculation-aware performance optimizations and
eliminating the need for points-to analysis. Moreover, TDI’s color
management is flexible. TDI can support a few-color scheme with
sensitive data annotations similar to prior work (e.g., 2 colors) or
a many-color scheme based on basic type analysis (i.e., one color
per object type). The latter approach provides fine-grained data
isolation, eliminates the need for annotations, and enforces strong
color-matching invariants equivalent to ideal (context-sensitive)
type-based points-to analysis. Our results show that TDI can
efficiently support such strong security invariants, at average
performance overheads of <10% on SPEC CPU2006 and nginx.

I. INTRODUCTION

Despite advances in security engineering, information leak-
age vulnerabilities (or info leaks) remain a major security
threat. Modern systems software is riddled with info leak
bugs [59] and Spectre-based variations [32] have expanded
the already large attack surface. Unfortunately, existing mit-
igations that aim to significantly reduce such attack surface
incur nontrivial performance costs. In this paper, we show such
costs are not fundamental and an efficient, fine-grained data
isolation strategy based on secure allocation and lightweight
compiler instrumentation can mitigate info leaks, with single-
digit performance overhead for practical cases of interest.

a) The info leak era: Info leaks based on spatial (out-of-
bounds, type confused reads) or temporal (uninitialized, use-
after-free reads) memory errors are crucial in modern software

†Alyssa currently works at Intel; this work was done at the VU.

exploitation [59]. Such vulnerabilities enable attackers to leak
private data such as crypto keys (e.g., Heartbleed [50]).
Moreover, they enable reliable ROP [60] by allowing attackers
to bypass mitigations such as ASLR and stack cookies, or
by leaking a massaged memory object location [59]. While
info leaks in the architectural domain have dominated software
exploitation in the last decade, the attack surface has recently
expanded to the speculative domain with Spectre [32]. Spectre-
BCB (Bounds Check Bypass) is a widespread example of an
out-of-bounds read vulnerability using speculative execution.

b) Mitigating info leaks: Mitigating info leaks in a
practical way is notoriously difficult. Mitigations that en-
tirely eliminate the attack surface in the architectural (e.g.,
memory safety [74]) and speculative (e.g., load fencing [49])
domain are expensive and normally out of reach of the
performance budget available in production settings. More
practical confidentiality-preserving solutions described in lit-
erature are based on data isolation: isolating memory objects
in the address space to make them inaccessible from other
objects vulnerable to info leaks [12], [15], [38], [51], [65].
Such solutions generally color memory objects and load
operations based on the color of the objects they are allowed
to access, as dictated by static points-to analysis. Loads are
then instrumented to enforce such color-matching invariants
at run time by means of pointer masking [15], [33], domain
switching [12], [33], [38], [51], [53], [62], [65] or run-time
checks [12], [15], [33]. Some (not all) of these techniques (e.g.,
pointer masking) are also Spectre-safe. Some coarse-grained
solutions use a few, often two (sensitive vs. nonsensitive)
colors set by user annotations (e.g., labeling an allocation
site for crypto keys as sensitive) [12], [15], [51], while other
fine-grained solutions use many colors, based on the clusters
automatically determined by points-to analysis [7], [20], [62].

Regardless of the particular scheme, existing data isola-
tion techniques—barring those targeting very specific code
patterns [33]—rely on static points-to analysis to determine
the set of possible targets of load operations. Since such
analysis is conservative and context-insensitive (other than
having trouble scaling to large programs), the set of possible
targets is often largely overapproximated even in state-of-the-
art implementations such as SVF [63] or data isolation-tailored
ones such as DataShield’s [15]. Such overapproximations are
problematic for either security, as they lead to much weaker
color-matching invariants, or for performance, when additional
metadata-based run-time checks are used to compensate for

this weakness [7], [15]. Even without expensive run-time
checks, the cost of instrumenting pervasive load operations for
data isolation is nontrivial. For example, generic load pointer
masking-based solutions with only two colors incur over 17%
average overhead on SPEC CPU2006 [33].

c) TDI: In this paper, we present Type-based Data
Isolation (TDI), a new design point in the data isolation
space with strong performance and security guarantees against
both architectural and speculative info leak vulnerabilities.
TDI’s key insight is that we can eliminate expensive load-
based instrumentation and imprecise points-to analysis if we
rearrange the address space layout and constrain pointers
within specific address ranges. In particular, TDI allocates
independent memory regions (arenas) for each memory object
color, both on the heap and stack, and then uses lightweight
compiler instrumentation to ensure each pointer of any given
color stays within its arena (i.e., object color) by construction.
TDI’s design provides several benefits compared to prior work.

First, our arena-based strategy moves the compiler instru-
mentation from loads to pointer arithmetic operations. Not
only does this eliminate any dependency on context-insensitive
points-to analysis (which would degrade precision and secu-
rity), it also provides much better performance. Intuitively,
since many load operations depend on the same (or similar)
computed pointers we can reason about, this significantly
reduces the number of instrumentation points. Moreover, as
we will show, such strategy is particularly amenable to other
optimizations, such as efficient masking and the use of inter-
arena guard zones. While similar optimization techniques have
been explored by traditional SFI solutions [24], [35], [41],
[57], [73], we show that TDI’s unique pointer arithmetic de-
sign enables much more aggressive optimizations, significantly
outperforming prior work. We also detail and address the
challenges of making our optimizations speculation-aware.

Second, our design (and instrumentation) is entirely agnostic
to the object coloring scheme. Specifically, TDI supports
arbitrary coarse- or fine-grained (i.e., many-color) isolation
schemes—with colors determined by explicit user annotations
or static analysis—despite significantly outperforming prior
(annotation-based) data isolation solutions limited to coarse-
grained (e.g., 2-color) schemes. By default, TDI uses simple
static type analysis [66] to isolate each individual object
type in its own arena. This scheme supports annotation-
free protection and provides very fine-grained isolation—well
beyond object coloring based on the clusters determined by
points-to analysis used by WIT [7] and others [20], [62].

With such a scheme, architectural or speculative info leak
vulnerabilities cannot be exploited to leak data across any two
given object types. For example, a crypto key can never be
leaked by means of a vulnerable string or buffer of any other
type. We show that TDI can flexibly protect such situations in
OpenSSL with both coarse- and fine-grained coloring.

Third, our design eliminates the need for imprecise and
hard-to-scale points-to analysis altogether. Our masking in-
strumentation does not rely on any particular object coloring
scheme, as we simply constrain pointers within their predeter-

mined arena rather than attempting to enforce color-matching
invariants by reasoning about the targets of load operations.
This strategy matches the precision of the underlying object
coloring scheme, with no overapproximations. As a result, our
standard configuration using per-type arenas can enforce color-
matching invariants equivalent to load-side counterparts using
ideal (context-sensitive) type-based points-to analysis.

To summarize, our contributions are:
• We design and implement a prototype1 of TDI, a low-

overhead Type-based Data Isolation system based on
lightweight compiler instrumentation.

• We explore the challenges of efficiently implement-
ing such instrumentation, presenting aggressive but
speculation-aware optimizations allowing TDI to be ap-
plied to real-world code with low performance overhead.

• We automate TDI’s object coloring using state-of-the-art
type analysis, resulting in a fine-grained isolation system
that aggressively contains info leak vulnerabilities in both
the architectural and speculative domain.

• We evaluate our TDI prototype using standard bench-
marks and the modern nginx web server. Our results
show TDI incurs only single-digit average performance
overhead on SPEC CPU2006 and nginx.

II. THREAT MODEL

We assume a typical modern software exploitation scenario
with an attacker exploiting either spatial (out-of-bounds reads,
type confused reads) or temporal (uninitialized reads, use-
after-free reads) info leak vulnerabilities while all the standard
modern mitigations, such as ASLR, DEP, stack cookies, etc.,
are in place. The attacker has not (yet) achieved control-flow
hijacking, and aims to leak private data (e.g., crypto keys) or
information needed to hijack control (e.g., pointers or stack
cookies). The attacker can exploit both classical and specula-
tive info leak vulnerabilities. A typical example in the former
category would be a classical out-of-bounds read with an
attacker-controlled value which is not bounds-checked before
being used to index an array. A typical example in the latter
category would be a speculative out-of-bounds read with an
attacker-controlled value which is only architecturally bounds-
checked before being used as an array index. An attacker may
speculatively bypass the bounds check and leak data using
a (e.g., cache) covert channel a la Spectre-BCB [32]. While
we mostly focus on speculative out-of-bounds reads used by
the widespread Spectre-BCB variant, all the other classical
info leak vulnerabilities exploited in the speculative domain
(e.g., speculative type confusion) are in scope. Other unre-
lated Spectre (e.g., Spectre-BTB [32]) or transient execution
variants (e.g., MDS [67]) are out of scope and addressed by
complementary (e.g., hardware) mitigations. We also consider
other vulnerabilities (e.g., memory corruption) out of scope.

III. OVERVIEW

TDI hardens C/C++ programs by preventing pointers from
escaping the memory area—‘arena’—in which they were

1Our current code can be found at https://github.com/vusec/typeisolation.

2

Fig. 1. High-level overview of TDI.

arena arenaguard
zone

guard
zone

guard
zone

4gb 4gb
base
pointer

4gb 4gb

Fig. 2. Overview of TDI’s arena layout, with guard zones of ≥4GB.

allocated. Our design, as shown in Figure 1, relies on both
compiler instrumentation and runtime code. At compile time,
we instrument all pointer arithmetic to ensure that all pointers
stay in their original arena. At run time, our arena-based
allocator allows programs to allocate memory in appropriate
isolated heap/stack regions. Besides explicit program annota-
tions, TDI also offers support to automatically allocate both
heap and stack objects in arenas based on their type.

We constrain pointers to their original arena by masking
pointers to preserve the upper 32 bits during pointer arithmetic
(i.e., we only allow the lower 32 bits to change), as shown in
Listing 1. As long as all arenas are at least 4GB in size and
appropriately aligned, this ensures that pointers always point
to the same arena both before and after pointer arithmetic.

Masking pointers after every individual instance of pointer
arithmetic would be very inefficient; for example, a pointer
used to access successive elements of a struct or array would
need to be repeatedly re-masked. As shown in Figure 2, we
relax the need for masking by adding guard zones around each
arena. If a base pointer is known to be inside an arena, then
we know that any pointer within 4GB is either in the same
arena, or in a guard zone. This insight allows us to optimize
TDI by identifying and removing unnecessary masking.

IV. INSTRUMENTATION

In this section, we discuss the design of TDI’s compiler
instrumentation, which enforces our security guarantees by

char myFunction(char *validPtr, size_t idx)
char *newPtr = validPtr + idx;
upperBits = (validPtr & 0xffffffff00000000); 1⃝
lowerBits = (newPtr & 0xffffffff);
newPtr = upperBits | lowerBits;
char ret = *newPtr; 2⃝
return ret;

Listing 1: This pseudocode shows a potentially-unbounded
memory access 2⃝. TDI’s instrumentation (marked with a
dark background) preserves the upper bits of newPtr 1⃝. This
ensures that the access at 2⃝ cannot be further than 4GB from
validPtr, and so cannot escape validPtr’s arena.

arena arenaguard
zone

valid
pointer

unsafe
pointer

safe
pointer

masking

Fig. 3. Valid, safe and unsafe pointers; safe pointers are always within 4GB
of a valid pointer into the same arena, which means that while they may point
into a guard zone (as illustrated), they will never point to a different arena. If
the result of pointer arithmetic may lie in a different arena, we call the result
an unsafe pointer and mask it before use (as shown in Listing 1).

preventing pointers from crossing arena boundaries. Although
our design is not compiler-specific, we discuss some of the
details and challenges in the concrete context of LLVM.

TDI allocates each memory object (whether stack or heap)
in an arena based on its type; the 32 most significant bits of
each pointer identify its arena. The result of pointer arithmetic
may end up in a different arena, which would allow an attacker
to break isolation. We prevent this using pointer masking;
however, masking after every instance of pointer arithmetic
results in unacceptable overhead. To determine which pointers
we must mask, we divide pointers in three classes:

• A valid pointer can be proven to be in the same arena in
which the pointer from which it derives was allocated;

• A safe pointer either points to the same arena or to a
guard zone, in which case a dereference will fault;

• An unsafe pointer may point to a different arena.
These three classes are illustrated in Figure 3.

We can identify valid pointers based on their sources; for
example, allocation functions always return valid pointers. If
we can prove that the result of pointer arithmetic is within
4GB of the original pointer, we can classify that result as
safe; otherwise, such a result is unsafe.

Dereferencing a valid or safe pointer does not threaten
security, but we must ensure that unsafe pointers are not
dereferenced by loads or stores.

The base pointer of a pointer is the most recent known
valid pointer that a pointer derives from. We can ensure that
a pointer is valid by overwriting the high-order bits (which
represent the arena) with those of its valid base pointer,

3

i.e. masking the pointer, as described above. Such a masked
pointer is always valid, since it points inside the same arena
as the valid base pointer, and can then be safely dereferenced.

To ensure a valid base pointer is always available, we only
allow safe pointers to be used locally within a function; any
pointer which escapes a function’s scope (e.g., by being stored
to memory, returned from a function, or passed as a parameter
to another function) must be valid (i.e., must be masked if
necessary). This means we can determine pointer categories
with only intraprocedural analysis, since any pointers from
outside the scope of the function must be valid.

To summarize, we mask pointers in two situations:
• When an unsafe pointer may be used by a load (or

optionally, as the address used by a store). This means
we cannot prove that it is safe (<4GB away from a valid
pointer), and may now be pointing to a different arena.

• When a pointer value escapes the local analysis. For
example, when a pointer is stored in memory, passed as a
function argument or used as a return value. This ensures
that all pointers entering a function are themselves valid.

A. Challenges

Our instrumentation identifies pointer arithmetic and clas-
sifies the results as valid, safe, or unsafe. Doing this analysis
on real-world code must overcome the challenges below.

1) Arithmetic on non-pointer types: Since pointers can
be cast to/from other types, such as integers, we need to
distinguish pointer arithmetic from non-pointer arithmetic; we
want to mask all resulting pointers, but pointer arithmetic is
not always intended to result in a valid pointer. For example,
pointers may be subtracted to obtain a delta. Even though
the result of such arithmetic may escape local scope, the
result must not be masked by our instrumentation, since that
would produce incorrect code. Compiler passes also manipu-
late pointers, including converting them to untyped values.

We resolve this by doing pointer detection, allowing us to
find which variables/intermediates are truly (non-)pointers.

2) Non-constant offsets: Array indexes or other pointer
offsets are often non-constant. Our efficiency relies on being
able to prove that such offsets are within 4GB of a known-
valid pointer, allowing us to mark the result as safe; however,
offsets are often stored in 64-bit variables.

Pointer arithmetic is often performed on the result of previ-
ous pointer arithmetic; since safe pointers are not necessarily
valid, efficient instrumentation also requires that we handle
such ‘chained’ arithmetic. Pointers may only be modified
and/or used in some program paths, making it more difficult to
reason about their behavior. A common example is a pointer
which is incremented inside a loop, as we see below.

We resolve this using the static analysis we describe below,
range analysis and dominating pointer access analysis.

3) Speculative execution: Since we include speculative
execution (Spectre) in our threat model, bounds provided by
existing static analysis can be unsafe. For example, LLVM’s
ScalarEvolution (SCEV) will use array bounds checks to prove
that an array access is in-bounds, but that array may still be

accessed on a transient path. We resolve this by ensuring our
custom analysis is valid in the context of speculative execution.

B. Pointer detection

We found that, in many cases, variable types marked in the
original source code and in the compiler IR do not accurately
reflect whether a variable is used as a pointer or not. To
ensure masking wherever needed while retaining compatibility
with existing code, we designed static analysis to detect
pointer/non-pointer status. Our main insight is that variables
should be classified (where possible) based on how they are
used rather than how they are declared.

Our approach marks variables as pointers, non-pointers,
or negated pointers in several steps. In each step, we mark
variables based on their usage (if their type is still unknown),
and then we use forward and backward propagation to infer the
type of other variables. For example, our first step considers
all pointer dereference operations and marks their operands as
pointers. The main idea of our propagation is that a pointer
plus an offset is still a pointer, a pointer minus another pointer
(or plus a negated pointer) is an offset, and other operations
typically yield non-pointers. Details are in Appendix C.

C. Categorization

To be able to apply efficient masking, we categorize all
pointer arithmetic results we detect as valid, safe, or unsafe.
We start with the first such instructions in a given function
and proceed top-down (based on domination). Since the clas-
sification of arithmetic can depend on other arithmetic, we can
also temporarily place them in a group of unknown arithmetic.
We repeat this process until all arithmetic has been classified;
if there are only circular dependencies left, we mark the first
remaining arithmetic as unsafe and continue.

We only need to mask pointers which are dereferenced by
a load (or store) instruction, are used in pointer arithmetic, or
which escape the local function. This includes both direct and
indirect uses (including integer casts which are later used by
arithmetic). We ignore instructions which are not used in such
ways, which removes almost all ambiguous cases of pointer
arithmetic. We discuss some remaining cases in our evaluation.

At this stage, we apply dominating pointer access analysis,
which we describe in Section IV-F, which can prove that some
pointers are valid or safe. Otherwise, we trace the instruction’s
base pointer. If the source is outside the local scope (a function
argument, returned from another function, or loaded from
memory), we consider the source to be valid. If the source
is a pointer arithmetic instruction (or a merge of several such
instructions), then we use the classification of that instruction
(and defer processing if that instruction has not yet been
classified). Otherwise, we consider the source to be unsafe.

Our classification for the result of pointer arithmetic then
depends on the classification of the base pointer: (1) a valid
base pointer means that the result is safe; (2) a safe base
pointer means that the result is unsafe (and we will mask
the pointer before using it); (3) an unsafe base pointer must
itself be masked. Since a masked pointer is valid, the result of

4

void func(char *validPtr, size_t idx) {
char *ptr = validPtr;
if (...)

1⃝ ptr = ptr + 2;
else

2⃝ ptr = ptr + 4;
3⃝ char val = *(ptr + 1);
}

Listing 2: The access at 3⃝ is safe, because the maximum
offset to validPtr is less than 4GB.

the arithmetic is then safe. If we cannot prove that an offset is
bounded to 4GB (nor, as described below, truncate the offset to
enforce this), we mark the current arithmetic result as unsafe.

D. Range analysis

One important supporting component of our analysis in-
volves determining the maximum range of offsets used in
pointer arithmetic. We require a Spectre-BCB-aware analysis
which calculates the worst-case (largest) distance to a known-
valid pointer on all paths within a function, which prevents
using standard compiler analysis (such as LLVM’s SCEV).
Instead, we designed an alternative analysis which performs a
recursive check of all conditional control flows. We calculate
the bounds by considering instructions such as truncations,
arithmetic (e.g., AND operations), the bitwidth of loads/vari-
ables, and sources such as constant values. When merging
several possible bounds (e.g., phi nodes), we use the worst-
case bound among all incoming values.

One special case is where we can prove a 32-bit bound, i.e.
a maximum offset of 4GB, which is multiplied by the object
size, such as during an array lookup. We can ensure that such
an index is always safe by ensuring that the guard zone is at
least 232*sizeof(type) bytes (see Section VI). The majority of
such calculations are performed for types ≤ 8 bytes (64-bit
pointers or doubles); if our arenas use 32GB guard zones, then
we can classify all scaled 32-bit offsets for such types as safe,
assuming the base pointer is known to be valid.

When we are using this range analysis to determine whether
a pointer is safe, and the distance to a valid pointer cannot be
proven to be less than 4GB, simply truncating the offset in
bytes to 4GB (32 bits) is sufficient to ensure that the resulting
pointer is safe. Note that masking is still required to make it
valid, and that truncation is unnecessary if the analysis later
decides to mask this pointer.

E. Chaining distances

A pointer is safe when the distance to a valid pointer is
known to be less than 4GB. Even when pointer arithmetic
is based on a safe pointer, we can compute bounds using
the offsets of previous arithmetic, and use that information
to prove that the result is still within 4GB of a known-
valid pointer. A simple example is shown in Listing 2. Here,
our analysis checks the phi node for ptr at 3⃝, which has
incoming values from 1⃝ and 2⃝, and concludes that the
maximum offset to a known-valid pointer is less than 4GB
even though the intermediate pointers may not be valid.

void func(char *validPtr, int idx) {
char *A = validPtr + idx;
char *B = A + 1024;

1⃝ char valA = *A;
2⃝ char valB = *B;
}

Listing 3: After 1⃝, pointer A is known to be valid, so when
execution reaches 2⃝, we know that Pointer B is safe.

void func(char *validPtr, size_t size) {
1⃝ char *ptr = validPtr;

for (size_t n = 0; n < size; n++) { 2⃝
3⃝ ptr = ptr + 1;
4⃝ char val = *ptr;
}

}

Listing 4: The pointer arithmetic at 3⃝ is dominated by the
loop header at 2⃝. Since all candidates for ptr are valid in the
context of 2⃝, we know that ptr is safe at 4⃝.

Again, standard compiler analysis could provide this infor-
mation (by calculating the distance between pointers), but it
does not consider speculative flows. Instead, we use our own
(simple) control-flow-insensitive distance analysis, which is
also needed to support several the other analysis stages.

F. Dominating pointer accesses

When a safe pointer is dereferenced to access (load or store)
memory, any code after that memory access can assume that
the used pointer was valid. If a safe pointer is not valid, then it
must point into a guard zone; after such a pointer is accessed,
a fault will occur, and execution will not continue.

This allows us to improve our categorization of pointers for
all code dominated by (guaranteed to run after) a memory
access. Existing compiler static analysis does not (easily)
provide the information we need. Alias analysis focuses on
proving that pointers are never pointing to the same object,
while our analysis must prove that pointers are always pointing
to the same arena (i.e. within 4GB of a valid object).

Listing 3 provides a simple example. The access at 2⃝ is
dominated by the access at 1⃝. Since the pointer B at 2⃝ is less
than 4GB away from the pointer A used at 1⃝, then B could be
categorized as safe in the context of 2⃝, and architecturally it
could be accessed without masking. However, note that in this
particular case, in the face of a Spectre attack, B might still be
dereferenced speculatively even if A points to a guard zone.
This limits the applicability of this type of optimization in a
threat model where we must also consider transient attacks.

However, only a small number of loads/stores will be
speculatively queued [40]. As long as we limit the distance
between successive accesses (we limit it to 64kB), and ensure
that base pointers are always valid (masking them where
needed), we can make such optimizations speculation-aware.

For example, consider Listing 4, where ptr is incremented
inside the loop. On the first iteration of the loop, the new ptr
at 3⃝ is based on the valid pointer from 1⃝. On later iterations,
the new ptr at 3⃝ is dominated by the previous access at 4⃝.

5

void func(char *validPtr, size_t size) {
for (size_t n = 0; n < size; n++) {

char val = *(validPtr + n);
}

}

Listing 5: Each access in the loop is safe, due to being at most
1 byte away from a known-valid pointer.

; RAX: valid pointer, RCX: pointer to be masked
xor %eax, %ecx ; xor low 32 bits (clears upper bits)
xor %rax, %rcx ; xor all bits

Listing 6: Example x86-64 code for pointer masking.

We can check whether all incoming values at 2⃝ (the loop
header) are valid in the context of 4⃝, i.e. whether all the
potential values of ptr are valid at this point. This allows us
to determine that the access at 4⃝ is safe.

Finally, we consider Listing 5, which uses a loop induction
variable rather than modifying the pointer in the loop. Even
though we avoid use of non-speculative-safe analysis, we
can analyze simple cases where pointers are being offset by
a fixed stride based on a loop induction variable. In this
example, we detect that the offset n is a loop induction variable
which increments (or decrements) at each iteration, and that
the distance to the known-valid pointer from the previous
loop iteration is <4GB (or, again, a fraction of this due to
speculative safety). This allows our analysis to confirm that the
access is valid in the context of the loop. Although in practice
the involved strides are often much larger (e.g., stepping over
arrays of large structs), the same reasoning applies.

TDI provides static analysis for each of the three situations
described above, and uses the information obtained to mark
pointers as valid or safe. Importantly, we chain the analysis
described above; for example, we can detect accesses which
are close to a known-valid access, which in turn was based on
loop induction variable analysis. Combined, this allows us to
significantly improve the performance of many inner loops and
other performance-sensitive code, by removing unnecessary
masking where we can prove pointers to be safe.

G. Masking

Finally, although our design relies on the static analysis
described above to avoid the need for masking where possible,
our instrumentation also needs to efficiently emit code for
applying masks where it cannot be avoided.

We can efficiently mask pointers on both x86-64 and
AArch64 by making use of implicit clearing of the upper 32
bits of 64-bit registers, when they are used as 32-bit registers.
A 32-bit XOR of a valid pointer with a (potentially) unsafe
pointer, followed by a 64-bit XOR, will preserve the lower
bits of the unsafe pointer, but overwrite the upper 32 bits.

We found the code emitted by compilers for this sequence
to be very efficient. For example, the code in Listing 6 is
a typical x86-64 code sequence emitted by LLVM for our
pointer masking; bitmask-based arithmetic is used in cases
where such a sequence would be inefficient.

V. ARENA-BASED ALLOCATION

The only requirement that TDI imposes on allocated objects
is that preserving the upper bits of a pointer must not result
in corruption of valid pointers; that means that the lower N
bits of any pointer must remain constant for the entire object,
and thus that allocated objects must not exceed the arena
size. If necessary, larger objects can be supported by using
a larger arena size, or relaxing checks in some circumstances;
we discuss some real-world examples later.

TDI relies on objects being allocated within appropriate
arenas. Source code annotations and runtime calls could be
manually added to source code to allocate objects in appro-
priate arenas. However, this requires a substantial investment
in time, and only protects a subset of code/data. Instead,
TDI provides automatic type-based isolation based on type
information from previous work [66].

For heap allocations, our arena-based allocator allows ob-
jects to be allocated in a specific arena. Where type (or callsite)
information is available, TDI allocates each type of object in a
different arena. Otherwise (e.g., allocations by uninstrumented
libraries) we allocate in a generic untyped arena, isolated from
other arenas. All arenas are allocated dynamically, allowing
isolation decisions to be made at runtime.

We allocate the stack in an independent arena, isolating it
from other arenas. We can also enforce type-based allocation
on the stack, by isolating stack objects in typed arenas.

To support programs which use out-of-bounds pointers
which are just after or before the valid memory range of an
object, we also reserve some space at the start and end of every
arena. This is required because our instrumentation can mask
such pointers to ensure they are valid; a subsequent unmasked
use (as a safe pointer within 4GB) may end up accessing the
guard zone rather than the intended object.

VI. IMPLEMENTATION

A. Compiler instrumentation

We built our prototype implementation based on LLVM
9.0 (together with clang), using a pass (∼ 2500 SLOC) that
implements the static analysis and categorization described in
Section IV-C, along with instrumentation of unsafe arithmetic
and/or offset truncation. Our distance and loop analysis is cur-
rently only supported on GEPs. We perform our transformation
at LLVM IR level, running our pass (and some support passes)
after other LLVM IR transformation passes are complete.

Our pointer detection uses type-based alias analysis (TBAA)
metadata (added by clang) to help find loads of pointers
(even when typed as integers). We treat vectors of pointers as
pointers, instrumenting arithmetic on vectors where needed;
our masking is often overly conservative since some of our
analysis does not support vectors, and we mask all pointers
inserted into aggregates (structs and LLVM-level arrays).

B. Arena allocation

We implemented an arena-based allocator on top of tcmal-
loc [25]. We chose to build our allocator on tcmalloc to allow
fair performance comparisons with a non-isolated baseline, but

6

we could also modify an existing arena-based allocator such
as PartitionAlloc to provide the needed behavior. We partially
based our work on the patches from Type-after-Type [66].

We do not use the first and last tcmalloc page (8K) of
each arena, so that pointers which are just before or after
an allocated object are left unmasked; this also keeps stack
pointers inside arenas. If an arena runs out of space, we
allocate additional arenas with new guard zones.

As discussed in Section IV-D, we optimize typical index
scaling cases by mandating 32GB guard zones; this allows
∼ 3600 4GB arenas in the typical 47-bit userspace address
space of current x86-64 processors (see Section IX-D).

The addresses ≤32GB should be left unmapped, to prevent a
(valid) NULL pointer from being used to access an arena. This
requires building binaries as position-independent executables
(PIE) – the standard for most recent Linux distributions. A
similar relocation is required for LLVM’s SLH mitigation.

C. Type-based isolation

We use Type-after-Type [66] (TAT) to obtain type informa-
tion. TAT detects types at allocation sites based on C-level data
type information including type casts and sizeof operators.
When such data type analysis fails (i.e., for untyped char
allocations), TAT resorts to using the callsite ID as the type.

To deal with custom allocator wrappers, TAT conservatively
detects and aggressively inlines them before the type analysis.
This strategy adds context sensitivity to the analysis, boosting
precision and resulting in fine-grained type identification with-
out run-time tracking [6]. In particular, this reduces the number
of untyped allocations and also ensures the residual untyped
allocation callsite IDs yield one type per allocation context
(including custom wrappers) rather than one per allocator call.

We ported TAT to LLVM 9.0, fixed various bugs, expanded
its allocation function support, and modified its runtime library
to allocate safe stacks in typed arenas. Stack pointers are stored
in per-thread arrays; static indices for each type are assigned
during LTO (link-time optimization).

SafeStack (which TAT builds upon) uses SCEV to statically
determine whether accesses are in-bounds (and thus safe). Due
to speculative flows, we only allow this for constant offsets;
this results in more objects being placed on typed stacks.

TDI reduces the number of such moved objects using a
custom interprocedural analysis pass which marks function
pointer arguments which are only accessed in-bounds. This
allows some objects – in particular, pointers to variables used
to store lengths/sizes – to remain on the safe stack.

VII. EVALUATION

We first consider some examples of TDI’s mitigation of
classical and Spectre-BCB vulnerabilities, and then provide
an evaluation of benchmarks (SPEC CPU2006/2017) and a
web server (nginx with OpenSSL). We consider three basic
configurations in all our evaluations:

• Typed allocation: We apply type analysis and allocate all
heap and stack objects in typed arenas. This could be
seen as an spatial extension of Type-after-Type.

• Masking: We instrument pointer arithmetic; since this
requires arena alignment, we run with our arena-based
allocator placing everything in a single heap arena; sim-
ilarly, all stack contents are a single arena.

• Full protection: We apply our complete defense, including
typed allocation and instrumenting pointer arithmetic.

A. Vulnerabilities

To confirm TDI’s protection against real-world vulnerabil-
ities, we checked relevant issues in the CVE database; here,
we discuss a small selection to illustrate the different ways in
which TDI can mitigate issues:

CVE-2016-1234 (glibc): Linear stack buffer overflow in
glob. Although we cannot build all of glibc, we built glibc’s
glob.c using TDI after removing some clang-incompatible
lines from headers. The stack buffer is identified as having
a unique type and is allocated in an isolated arena, which
would prevent the overflow from being exploitable.

CVE-2018-16845 (nginx): ngx http mp4 read atom sub-
tracts a header size from an (unchecked) value read from
an mp4 file, resulting in an integer overflow. One potential
exploitation path uses the ‘trak’ parser to recurse into the
vulnerable function, allowing control of end and potentially
adding a 64-bit offset to buffer pos (a pointer to the input
buffer). We confirmed that, as expected, TDI masks this (and
other) pointer arithmetic. Since the buffer is allocated from
a unique callsite and thus is placed in a separate arena, this
appears to fully prevent exploitation of the bug.

CVE-2018-16890 (curl): Integer overflow allows an attacker
to disclose data (via a NTLMv2 response) via an attacker-
controlled 32-bit array index. The array is allocated by a
malloc call inside Curl_base64_decode; again, TDI does
not need to apply any masking, since heap arena isolation
prevents an attacker from disclosing any data except other
allocations from that callsite.

CVE-2019-3859 (libssh2): This CVE covers several differ-
ent issues; we consider one in kex.c. Attacker-controlled
32-bit lengths provided during SHA1 key exchange are not
checked, potentially leading to reads beyond the end of a
buffer; the sum of the offsets can be >4GB, but TDI masks
the pointer arithmetic and mitigates the vulnerability.

B. Spectre-BCB

To ensure that our instrumentation is applied to potential
Spectre-BCB gadgets, we applied TDI to the corpus of 27
Spectre v1 variants provided by the authors of Spectector [27]
(including the 15 examples from Kocher [31]). TDI correctly
masks the potentially out-of-bounds loads for all 27 examples.

We also examined four Spectre demos from Google’s
Safeside [1] suite, which we modified to allocate the private
(secret) string using malloc. Originally, the public and private
strings were both static global strings, stored in the same
arena. We also made changes to prevent truncation or masking
when calculating cross-arena offsets, which would typically be

7

attacker-supplied rather than calculated by the code itself, and
confirmed that the examples work when TDI is not applied2.

We mitigate three of these four examples:
1) spectre v1 pht sa: This is a Spectre-BCB example,

which is covered by our threat model; as expected, the private
string no longer leaks when TDI is applied, since the array
access is correctly masked.

2) spectre v1 btb sa: This example uses a mispredicted
indirect branch to cause type confusion. Even though this is
not covered by our threat model, the private string no longer
leaks when TDI is applied. The transient (mispredicted) branch
target uses an out-of-bounds read and TDI prevents it from
accessing the private string. (If we modify the code to remove
the out-of-bounds read, the example leaks the private string
after TDI is applied, as expected.)

3) spectre v1 btb ca: This uses a mispredicted indirect
branch to transiently execute code to read the private string.
Since the transiently executed code is intended to be able to
read the private string, this is outside our threat model, and
the code leaks the private string even after TDI is applied.

4) spectre v4: This example is intended to demonstrate
Spectre-SSB. It causes an out-of-bounds array index to be
transiently used while waiting for a store to complete. Since
the array index is out-of-bounds, TDI masks the array access
and the private string no longer leaks.

C. SPEC CPU2006 and CPU2017

We evaluated the performance of TDI using SPEC
CPU2006, to aid comparison with previous work. We also
present results from SPEC CPU2017 (without OpenMP). We
ran these evaluations on Xeon E5-2630 v3 CPUs with 64GB of
RAM. Transparent Huge Pages were disabled and the bench-
marks were pinned to a single core. In both cases, we include
all C/C++ benchmarks and use the reference SPECspeed data.
We run each benchmark/configuration at least 5 times; the
reported numbers are the median value from these runs.

We modified some of the benchmarks to make them build
and run successfully with TDI. We also applied these changes
to the baseline where relevant. These changes can be grouped
into three categories (details are in Appendix A):

• build problems: we added an #include to dealII’s code.
• undefined pointer arithmetic: we apply gcc patches and

exclude one perlbench function.
• large allocations in CPU2017: we disable LTO (and thus

instrumentation) for the SPEC I/O wrapper for xz, which
allocates a >4GB array for one test. We also annotate one
struct type in deepsjeng (via flags), which is used only
for a >4GB hash table (accessed via a masked index).

For our baseline, we compile the benchmarks using an
unmodified LLVM, and link against an unmodified version
of tcmalloc. We compiled all benchmarks with -O2, and PIE
flags. All our benchmarks were compiled using LTO (via the
gold linker), and the same flags were passed to the linker.

2We excluded the out-of-scope ret2spec demos since they do not leak any
data on our Cascade Lake machine, presumably due to hardware mitigations.

0% 5% 10% 15% 20% 25% 30% 35%

perlbench
bzip2

gcc
mcf
milc

namd
gobmk
dealII

soplex
povray
hmmer

sjeng
libquantum

h264ref
lbm

omnetpp
astar

sphinx3
xalancbmk

Typed allocation
Masking
Full protection

Fig. 4. CPU2006 runtime overhead

We did not use -fno-strict-aliasing; TBAA information im-
proves our pointer analysis, and we did not have miscompila-
tion issues in this version of LLVM. Otherwise, clang could
be modified to output TBAA metadata despite this flag.

Figure 4 shows runtime overhead for our three basic con-
figurations. Geometric means are 2.5% for typed allocation,
5.8% for masking, and 8.4% for the combined full TDI
protection. This is significantly more efficient than prior load
pointer masking-based solutions with only two colors (e.g.,
over 17% on CPU2006 for [33]). We can see that overhead is
high (>15%) for two benchmarks, perlbench and xalancbmk,
due to the cost of typed allocation; perlbench’s overhead is
due to the type-safe stack (2% heap, 13.4% heap+stack),
while xalancbmk’s overhead is due to both (11.5% heap, 21%
heap+stack). Much of the perlbench overhead appears to be
due to LLVM register allocator issues [66], and could be
mitigated by limiting inlining.

We also evaluated runtime overhead for two alternatives
(full results can be found in Figure 11 in Appendix D):

(1) TDI without stores; here, we do not instrument pointers
used only by stores. Although the benefit is significant for
sjeng, hmmer suffers due to different base pointers being
masked on the hot path (which could be resolved with runtime
profiling). The geomean on CPU2006 is 8.1%, compared to
8.4% for full protection; the cost of reduced protection would
seem to outweigh this minor performance gain.

(2) TDI without dominator pointer access analysis. This
analysis significantly benefits some benchmarks (e.g., namd,
hmmer, sjeng and xalancbmk), and reduces the geomean
overhead from 10.4% to 8.4%. We believe that improving our
analysis could probably improve this overhead further; in any
case, the benefit seems worth the implementation effort.

The runtime overhead of TDI on SPEC CPU2017 is shown
in Figure 5; the geomean (12.5%) is higher than that of
CPU2006. Overall, masking is the source of the majority of
the overhead (geomean 8.0%), although omnetpp suffers from
inefficiencies in our heap allocation. This is partially due to
shortcomings in the analysis of our prototype; the CPU2017
versions of x264 and imagick contain significant numbers

8

0% 5% 10% 15% 20% 25% 30% 35% 40%

perlbench_s
gcc_s
mcf_s
lbm_s

omnetpp_s
xalancbmk_s

x264_s
deepsjeng_s

imagick_s
leela_s
nab_s

xz_s

Typed allocation
Masking
Full protection

Fig. 5. CPU2017 runtime overhead

of (non-GEP) pointer arithmetic instructions in situations
unsupported by our analysis, and are conservatively masked.

Our benchmarking of xz shows high variance, with a
standard deviation of ∼5% (including the baseline). Other
benchmarks (e.g., mcf and lbm) have stddev <1%; the
speedups shown when using typed allocation are consistent.
As discussed by Mytkowicz et al. [45], measurement bias
is difficult to avoid in this form of evaluation. Our instru-
mentation and runtime inevitably have side-effects which will
influence performance. For example, arena allocations may
cause more cache conflicts; allocations at the start of arenas
will share lower bits, and many arenas are only used for
small allocations. This could be mitigated by adding small
offsets to the arena base, e.g., based on internal type IDs or
allocation order. However, we did not observe any significant
performance change when subtracting small (cache-line-sized)
offsets from the base pointers of the typed stacks.

Full TDI’s memory overhead (peak RSS) on CPU2006 has
a geomean of 15.5% (vs unmodified tcmalloc); this is due
to increased memory fragmentation caused by our allocation
strategy, amplified by tcmalloc configuration (e.g., minimum
page cache sizes) which are inappropriate for arenas. To ensure
fairness of our baseline comparison, we left these values
unmodified. Details can be found in Figure 9 in the appendix.

We also compared the runtime overhead of TDI to LLVM’s
Speculative Load Hardening (SLH) mitigation. SLH has a
significantly stronger speculative threat model which aims to
prevent loads from executing by mixing predicate state (from
branches) into the pointers being loaded, providing a mitiga-
tion against the majority of Spectre v1 attacks. However, over-
head when applying (x86) SLH to CPU2006 is prohibitively
high (geomean 75.6%), and it provides only speculative safety.
(Overhead should be slightly lower without indirect call/jump
hardening, but we encountered code generation errors when
disabling it.) Again, detailed results are in the appendix.

D. nginx

We tested TDI using the nginx 1.18.0 web server. We used
default options and enabled SSL, but disabled the ‘geo’ mod-
ule (due to undefined behavior, see Appendix A). We linked
against OpenSSL 1.1.1h3 using LTO (and -O2), hardening

3configured with no-shared, no-asm and no-zlib.

100k

200k

300k

400k

 100 1000

th
ro

ug
hp

ut
 (r

eq
s/

s)

concurrent connections

Baseline
Masking
Typed allocation
OpenSSL hooks
Full protection

Fig. 6. nginx throughput

both nginx and OpenSSL with TDI. We confirmed that the
OpenSSL tests pass after full hardening, and used a hardened
openssl binary to generate 2048-bit RSA keys for SSL.

Note that nginx does not fully benefit from our automated
type-based protection, since allocations in nginx’s pools (in-
cluding shared memory slab pools) lose the benefit of intra-
pool type isolation. However, since different types of pools are
identified based on callsites, pools containing disjoint types
remain isolated from each other, as well as from the many
other arenas identified by the type analysis (Section VII-F).
One improvement could be to allocate each pool instance in
a separate arena, providing finer-grained isolation.

The ‘OpenSSL hooks’ configuration uses TDI’s instrumen-
tation but assigns arenas using OpenSSL’s allocator hooks; as
we discuss later, such arenas are surprisingly coarse-grained.

We evaluated nginx by serving a small file (64 bytes)
via SSL (with default settings), using two Xeon Silver 4110
machines with 100Gb/s Ethernet (plain HTTP is largely I/O
bound). We configure nginx to use 16 workers, and use 16
threads of wrk2 [3] to make the requests.

Throughput results are shown in Figure 6 (median of 3 runs
of 30s each); all cores are saturated for ≥96 connections. Sat-
urated throughput at that point is 5.4% lower than the baseline
for full TDI, 3.6% for masking, 3.8% for the typed allocator
and 4.8% for the hook-based allocation. 90th percentile latency
is 4.7% higher for full TDI, and 2.9%, 3.6% and 3.9% for
masking, typed allocator and the hooks respectively.

E. Instrumenting system libraries

TDI’s protection does not rely on complete instrumentation
of system libraries, since pointers passed to external functions
or stored in memory are always masked. For example, a call
to memcpy will always be provided with valid pointers to
the expected arenas, and any pointers copied by memcpy will
already have escaped analysis, and so also have been masked.

Since glibc does not support clang, alternative C libraries
have compatibility issues, and TDI’s stack instrumentation
currently requires LTO, we expect TDI to be used in practice
with an uninstrumented system libc. Despite this, we also
evaluated the overhead of applying TDI’s full stack/heap
protection to libc, by using musl (and libc++) rather than glibc.

Throughput overhead for our nginx+OpenSSL benchmark
is 8.4% at the point of saturation (vs 5.4% without libc

9

-5% 0% 5% 10% 15% 20% 25% 30% 35%

gzip
vpr
gcc

mesa
art

mcf
equake

crafty
ammp
parser

eon
perlbmk

gap
vortex
bzip2
twolf

Full protection

Fig. 7. CPU2000 runtime overhead

instrumentation), and lower using alternative configurations
such as using 64kB files (4%) or (multi)thread pools (6.8%).
Geomean runtime overhead is 10.3% for SPEC CPU2006 (vs
8.4%); as before, xalancbmk and perlbench are largely respon-
sible. Similarly, geomean overhead is 13.9% for CPU2017 (vs
12.5%). Details can be found in Appendix D.

We also evaluated TDI on SPEC CPU2000, to aid com-
parisons with prior work. Again, details of the (mostly minor)
changes are in Appendix A. Figure 7 presents our performance
results for full protection with complete instrumentation (in-
cluding musl/libc++). As shown in the figure, the geomean
runtime overhead is 8.8%—with the highest overhead (35.8%)
for perlbmk, similar to previous results.

Our CPU2000 overhead is comparable to domain-based
sandboxing solutions such as NaCl [72] (∼ 7%)—despite
our support for arbitrary (rather than NaCl-only) programs
and intra-domain isolation. Moreover, our overhead is much
lower than state-of-the-art software fault isolation techniques
that rely on highly optimized address masking instrumenta-
tion on loads/stores [73] (rather than pointer arithmetic like
TDI). Specifically, Zeng et al.’s solution [73], which can only
support the limited number of colors allowed by load/store
masking, yields 19% overhead on top of a CFI baseline
and on a CPU2000 subset excluding costly benchmarks like
perlbmk. More fine-grained solutions like WIT [7] can support
more colors (limited by the imprecision of context-insensitive
points-to analysis), but load instrumentation can increase over-
head (10% on a CPU2000 subset excluding costly benchmarks
like perlbmk) “by more than a factor of three” [7]. Note that
these numbers (from [7] and [73]) are not directly comparable
due to the different evaluation platforms.

F. Isolation granularity

Although TDI can be used as a traditional coarse-grained
(e.g., 2-color) isolation scheme even in the absence of any
automated color analysis (significantly outperforming prior
load/store address masking solutions, as noted), we briefly
evaluated how arenas are assigned in practice by the automated
type analysis in a fine-grained, many-color configuration.

For our nginx(+OpenSSL) benchmark, the automated type
analysis (TAT) statically identifies 197 colors (and arenas) on
the stack and 649 colors (and arenas) on the heap. On the heap,
the data type analysis assigns a total of 96 types to allocations

0 25 50 75 100 125 150 175
Arena number/ID

100

101

102

103

N
um

be
r

of
 h

ea
p

ob
je

ct
s

al
lo

ca
te

d

Automated (TAT)
TAT + OpenSSL hooks
OpenSSL hooks only

Fig. 8. Number of objects allocated in each nginx+OpenSSL heap arena.

at 583 call sites, while the remaining 553 types are identified
by the context-sensitive callsite ID analysis based on wrapper
detection and inlining (Section VI-C).

We also looked at the per-arena object distribution during
the execution of the benchmark. Figure 8 shows the number
of objects allocated in each heap arena during startup and the
first client request. The ‘OpenSSL hooks’ results manually
assign arenas by using OpenSSL’s built-in support for hooking
allocator functions (CRYPTO_set_mem_functions); we
used one-line wrappers which assign an arena ID based on
the callsite information provided by OpenSSL. There were
178, 133, and 106 heap arenas for the automated (TAT),
TAT+hooks, and (manual) hooks configurations respectively.
The two arenas with the highest number of objects are used
to store OpenSSL object names and their related hashes, and
all configurations have a relatively large ‘long tail’ of arenas
used only for a single object.

Notably, this shows that attempting to manually assign are-
nas by hooking OpenSSL’s allocator functions leads to coarser
arenas than a fully-automated approach, even when TAT is
also used to assign arenas and can merge allocations of the
same type. The fully-automated approach can produce finer-
grained arenas because OpenSSL’s allocator hooks use indirect
calls and only provide direct callsite information (filename/line
numbers). For example, OpenSSL provides wrapper functions
for allocating and resizing ‘buffers’; OpenSSL’s allocation
functions are called from these buffer wrapper functions,
resulting in a large number of allocations from a small number
of callsites. TAT instead detects the buffer code as allocator
wrappers, and instead allocates arenas based on the parent
callsite since the buffer data is untyped (char *).

We also inspected arena usage for some of the SPEC
benchmarks. On the CPU2000 subset evaluated by WIT [7],
TDI’s type analysis yields a number of colors comparable to
WIT’s points-to analysis (which fares well on such simple
benchmarks with many stack allocations). However, unlike
WIT, TDI can easily handle the entirety of CPU2000 and
even much more complex programs. Moreover, while WIT
is limited to 256 colors, TDI uses a larger number of colors
even on the slightly more complex CPU2006 benchmarks.
For example, xalancbmk allocates 186 stack and 200 heap
arenas, and gcc allocates 110 stack and 192–198 heap arenas
(depending on the benchmark). Appendix E contains arena
statistics for the other benchmarks.

10

VIII. RESIDUAL ATTACK SURFACE

A. Spatial safety

TDI’s arena allocation could be applied without masking
(with much lower overhead). However, non-linear memory
vulnerabilities are becoming the primary form of spatial safety
vulnerability in the architectural [43] and speculative [32]
domain, which may allow attackers to bypass guard zones.
These are exactly the situations for which we apply masking.

As for the residual attack surface with full protection, TDI
cannot prevent overflows within/across objects of the same
color (i.e., type). This provides strong isolation for info leaks,
although in some cases there is a remaining attack surface for
intra-pool leaks. For example, OpenSSL stores data involving
highly confidential data (private/session keys) in the same
bignum types as data related to public keys; an info leak
bug specifically revealing bignum data for a public key may
also allow an attacker to obtain confidential bignum data. If
desired, TDI supports annotations to further improve isolation
of critical objects, much like existing data isolation solutions.

TDI also offers limited protection against memory corrup-
tion exploits which are outside our threat model. For instance,
if an attacker can overwrite a pointer (e.g., in a struct), they
can potentially bypass our mitigation. We make such attacks
more difficult by limiting the set of pointers at reach (pointers
within the same object type) and their ability to leak pointers.

B. Spectre

TDI provides the same protection against Spectre-BCB
attacks as it does against non-speculative information leaks—
preventing cross-arena leakage. Most other Spectre variants
are clearly out-of-scope and best mitigated by techniques
such as retpoline or hardware-based mitigations. However,
a theoretical attack surface remains in Spectre V1 gadgets
that exploit speculative issues beyond memory safety (e.g.,
logic bugs). We also do not prevent attacks exposing potential
code/stack addresses nor secrets which are already present in
registers. SLH also does not mitigate many such cases. If more
comprehensive protection is required, it may be possible to use
our arena-based approach to reduce the overall performance
impact of a more conservative SLH-style mitigation.

C. ASLR

Our prototype allocator allots pages linearly from the base
of each arena, but this is not required by our design; arenas
can be placed at any 4GB aligned address and pages can be
assigned non-linearly within arenas with no impact on ASLR
entropy. However, our design does reduce the entropy available
for fine-grained ASLR, since the available virtual address
space is reduced (by ∼3 bits in our prototype), as well as
the entropy for large allocations which cannot cross a 4GB
boundary. If an attacker leaks a pointer of a given type, they
obtain the high bits for the arena; other pointers of the same
type are likely to be in the same arena. However, they obtain
no information about pointers of other types, which are more
likely to be of interest to attackers.

D. Pointer arithmetic

TDI relies on instrumenting pointer arithmetic; specifically,
the security guarantees require that all pointer arithmetic is
instrumented, while the correctness guarantees require that
non-pointer arithmetic is not instrumented. Our prototype
implementation demonstrates that balancing these needs is
possible for real-world C/C++ code.

However, there are some cases where this is not possible.
For example, when a union contains both a pointer and an
integer value, there may not be a correct approach, if arithmetic
may be relevant for both values. Similarly, code may store
pointers as integers. Although we make use of sources such
as TBAA, sometimes arithmetic on such values cannot be
statically detected. Such code is simply incompatible with
static instrumentation, but broader analysis or approaches like
tagged unions [54] may help in some cases.

Other memory safety work solves these difficulties in
different ways. For example, Low-fat Pointers [23] ignores
‘uglygeps’, excludes 23 CPU2006 functions (including gcc
and perlbench) and does not instrument integer arithmetic.
Although our analysis is more complete, we still had to apply
some patches; we expect similar results in other software.

IX. PROTOTYPE LIMITATIONS

A. Completeness

We instrument code at the LLVM IR level. Instructions
could be reordered or modified during code generation in a
way that compromises our mitigation. There are also inevitably
unknown bugs in our prototype passes; however, we did not
find any missing instrumentation when manually inspecting
the output assembly code from TDI.

B. Type-based isolation

We rely on the type analysis of Type-after-Type [66] and
the limitations mentioned in their paper may result in mul-
tiple types being placed in the same arena. Complementary
approaches such as TypeClone [9] are an option for improving
security guarantees or reducing the number of types.

Our prototype of TDI does not place global variables in
type-based arenas; they are placed in data/BSS sections, in a
shared arena. Address-taken global variables could be isolated
by converting them to heap allocations. Custom memory
allocators may also need changes to ensure TDI’s type-based
isolation guarantees are as fine-grained as possible.

C. Temporal safety

tcmalloc’s design does not isolate size classes once memory
is returned to central pools, so new allocations of types with
a non-power-of-two size can overlap with previous allocations
of such types. Our allocator allows memory to be returned to
(typed) central pools, reducing temporal safety (but not isola-
tion) when misalignment may occur. This could be solved by
rearchitecting tcmalloc, or using a different baseline allocator.

11

D. Compatibility

Custom memory allocators which directly call mmap or brk
must ensure that allocations do not span arena boundaries if
they allocate memory regions >4GB. Custom memory allo-
cation code can also reduce security. For example, OpenSSL’s
‘secure’ allocation functions resize buffers by allocating new
memory and memcpying the old contents, rather than using
realloc; such functions reduce security if used with TDI.

TDI limits maximum object size due to pointer masking. our
prototype limits objects to 4GB. If larger objects are required,
manual annotations can be used, or masking can be disabled
entirely for some functions/types. We demonstrated this for
two CPU2017 benchmarks. Where a huge number of types
are used in a program, we can run out of virtual address
space, which can be solved by increasing the coarseness of
the type classification or reducing the guard zone size. In any
case, x86-64’s 47-bit space already allows more than 16,000
arenas, and 5-level paging (or ARMv8.2-LVA on ARM) adds
support for 56-bit userspace addresses. Note that TDI imposes
no limitations on how many objects can be allocated.

X. RELATED WORK

A. Secure allocators

Similar to TDI, secure allocators change the stack/heap
allocation strategy to improve security. A common approach
is to provide probablistic security by randomizing the po-
sitions at and/or order in which allocations are made, as
done by StackArmor [18] (stack), DieHard [10] (heap), and
OpenBSD’s allocator [44]. DieHarder [47] adds guard pages
to DieHard (like e.g., Electric Fence); however, allocations
remain distinguished by sizes, not types. Archipelego [39]
allocates one object per page, allowing guard zones between
objects. FreeGuard [61] provides probabilistic security using a
combination of randomization, delayed reuse, and guard zones.

Other efforts focus on temporal memory errors such as use-
after-free. MarkUs [5] delays freeing memory until pointers no
longer appear in memory, while FFmalloc [71] uses one-time
allocations (with no memory reuse at all).

Cling [6] mitigates heap memory reuse exploits using
independent allocator regions for each allocation site. Type-
after-Type [66] extends Cling’s design with compile-time type
detection, improved wrapper detection, and stack support.
Automatic Pool Allocation [37] relies on points-to compiler
analysis to split allocations into separate typed pools, which
allows for temporal protection of a subset of C [21]. All these
defenses use some kind of “typed” pools to enable type-safe
memory reuse, but do not provide spatial data isolation.

Modern web browsers also use manual allocation-level iso-
lation to improve security, such as IE’s Isolated Heap. In par-
ticular, PartitionAlloc [2] is Chrome’s default allocator (as of
March 2021). It allows (manual) allocation in isolated arenas
(‘partitions’), mitigating some temporal and linear overflow
vulnerabilities, and could be used as an alternative allocator for
TDI. V8 also sandboxes WebAssembly by limiting memory
offsets (to the sum of two 32-bit offsets) and allocating guard

zones for ±8GB around the heap [4], with accesses always
using a valid base address.

B. Data isolation

Address-based defenses [33] typically use annotations of
sensitive types or data to isolate one or more specific regions of
memory. Domain-based defenses [33] instead protect sensitive
code, protecting the data used by that code, and only allowing
access when execution has switched to the relevant domain.
Existing solutions fall in either one or both classes of defenses
and implement different isolation mechanisms.

DataShield [15] uses annotations and masking via instru-
mentation. Data-flow analysis identifies potential sensitive data
accesses, needing slower metadata checks, and protects non-
memory flows. Non-sensitive data is placed in memory <4GB
and pointers are truncated to 32 bits. Overhead in artifical case
studies, annotating a single type as sensitive, is 9.12% and
27.21% for two CPU2006 benchmarks, and lower (∼ 0% using
x86 prefixes) when code provably cannot access sensitive data.

ConfLLVM [12] also uses annotations along with segmen-
tation or Intel MPX. CPU2006 overhead is 24.5% without
any private data, although this includes CFI, and excludes
perlbench and xalancbmk (highest overhead in our evaluation).

MemSentry [33] evaluates a variety of these solutions,
implementing domain-based (virtualization and MPK) and
address-based (encryption, masking, and MPX) defenses. The
authors report 17.1% overhead for load masking on CPU2006.

Palit et al. [51] encrypt sensitive data using annotations and
points-to analysis. The overhead is 4-33% when protecting
only keys. MemCat [46] attempts to distinguish attacker-
controlled data using compile-time policy and allocates those
objects on a separate heap/stack. CPU2006 overhead is 21%.

ERIM [65] uses MPK (also Spectre-BCB-safe) to isolate
memory used by a trusted domain; they demonstrate low-
overhead protection of CPI’s [36] safe region. SeCage [38]
uses EPT (page table switching), automatically splitting off
code to protect annotated secrets, and xMP [53] uses a
similar approach to manually protect kernel data structures
or cryptographic data in user-space code.

Data Flow Integrity [17] (DFI) uses points-to analysis to
determine which stores should be accessible to each load,
enforcing fine-grained isolation at runtime with costly instru-
mentation that checks/updates a metadata table on loads/stores.
Write Integrity Testing [7] (WIT) reduces DFI’s overhead by
only protecting stores and limiting object colors to at most 256,
adding guards between objects to compensate for imprecise
points-to analysis; overhead is 10% on a CPU2000 subset
(without eon or perlbmk, TDI’s worst cases). Other variants
of schemes relying on points-to analysis also exist [62].

Hardware memory tagging (e.g., MTE [26]) provides an
alternative isolation primitive; it could be used as an alternative
to arenas, with TDI used to protect tags from info leaks.

Finally, TDI draws inspiration from optimization strategies
used by prior SFI [69] and other solutions. For instance, Zeng
et al. [73] use simpler forms of range and dominating pointer
analysis on x86 assembly to eliminate SFI instrumentation

12

on loads/stores. In contrast, TDI reasons over pointer arith-
metic at the compiler IR level, allowing simpler but more
effective static analysis to aggressively remove instrumenta-
tion. Previous work also used guard areas to eliminate SFI
instrumentation; in particular, on loads/stores with a fixed base
pointer [57], a fixed pointer offset [41], or to only detect
linear buffer overflows [11], [61]. In contrast, TDI uses guard
pages to reason about whether computed pointers are safe with
respect to arbitrary “valid” base pointers, rather than directly
reasoning about load/store accesses. TDI also considers specu-
lative flows, which limit (or prohibit) the applicability of much
of this previous optimization work. Finally, TDI’s instrumenta-
tion relies on efficient address masking similarly to some SFI
solutions [35] (others resort to bounds checking [24]), but uses
masking to preserve bits after pointer arithmetic, rather than
using a bitmask to remove bits at loads/stores. This allows TDI
to support fine-grained isolation, rather than only the coarse-
grained (e.g., 2-color) isolation of traditional SFI solutions.

C. Bounds-checking defenses

Some bounds checking defenses have similarities to our
work. Baggy Bounds Checking [8] instruments arithmetic
using tagged pointers (on 64-bit), with ∼60-70% overhead.
Low-Fat Pointers [23] simplifies this by encoding bounds into
valid pointers, instrumenting arithmetic and accesses, with
113% overhead. Delta Pointers [34] also instruments accesses
and arithmetic (documenting challenges similar to TDI’s); by
encoding the delta to object ends in pointers, the authors limit
detection to overflows and total memory space to 4GB, with
35% overhead. Similar in spirit to TDI’s guard zones, Delta
Pointers offloads checks to the MMU to improve performance.

Dhurjati et al. [19] use points-to analysis (via [37]) to
optimize bounds checks. By omitting checks when points-
to analysis fails, this avoids compatibility problems (unlike
similar work such as [20]) at the cost of security, and achieves
average overhead of ∼12% on the (simple) Olden benchmarks.

AddressSanitizer [58] is a compiler-based debugging tool,
using instrumentation, shadow memory and delayed reuse, but
recent overhead is still ∼80% on CPU2006. Newer sanitizers
such as CUP [13] and EffectiveSan [22] detect broader ranges
of threats, with significantly higher overhead.

D. Spectre mitigations

Canella et al. [14] describe three categories of Spectre
mitigations: mitigating covert channels (e.g., reducing timer
accuracy or hardware changes), aborting speculation (e.g.,
fences or retpoline), and making secret data unreachable.

Compilers can automatically insert fences after vulnerable
branches to stop speculation [29], but attempts to implement
this efficiently for Spectre-BCB (e.g., in MSVC) have been
shown to be error-prone [31]. Blade [68] proposes fencing/-
masking only paths where data may speculatively leak, which
the authors apply to WebAssembly. Operating systems such as
Linux and other solutions [49], [70] use similar selective (and
thus noncomprehensive) fencing policies based on manual an-
notations or results of program (i.e., gadget) analysis. State-of-

the-art comprehensive solutions such as LLVM’s Speculative
Load Hardening [16] (SLH) mitigation offer a complete but
costly alternative. SLH forces a data dependency on the control
flow leading to potentially-vulnerable loads, by mixing bits of
the predicates used by the control flow into the pointers used
by such loads. In contrast to such mitigations, TDI provides
a gadget-agnostic defense with strong and fine-grained data
isolation guarantees at low overheads.

Web browsers apply similar mitigations such as masking ar-
ray indexes [42], [52] and applying SLH-type poisoning [42],
[64]. Such mitigations are typically easier to comprehensively
deploy within JIT environments, but coarser-scale solutions
such as Site Isolation are still considered more cost effec-
tive [55]. Moreover, some of the efficient masking solutions
used by modern browsers such as Firefox use coarse-grained
masks which still allow (limited) out-of-bounds accesses to
objects of a different type [28], in contrast to TDI.

Ghostbusting [30] proposes mitigating Spectre-BCB vulner-
abilities with data isolation via domain switching, and Con-
TExT [56] protects annotated sensitive data using hardware ex-
tensions or uncacheable (‘non-transient‘) memory mappings.
The former has been only evaluated with synthetic programs,
the latter reports 71% for OpenSSL RSA vs our ∼16%,
although our threat models differ significantly.

Other efforts focus on detecting Spectre-BCB and similar
vulnerabilities. oo7 [70] finds potential Spectre vulnerabilities
using BAP to propagate taint from untrusted sources. Spec-
tector [27] instead applies symbolic execution to source code.
SpecFuzz [49] focuses on fuzzing software to find Spectre-
BCB gadgets and seeks to reduce the overhead of SLH (but
also its security guarantees) by excluding branches that do
not appear vulnerable. TDI’s overhead for OpenSSL’s ECDSA
benchmark is ∼7%, vs SLH’s ∼70%; SpecFuzz improves
the latter by only 5%, although the performance difference
is less extreme for other cases. We could attempt to use
SpecFuzz to reduce our masking, but this would remove non-
speculative protection and potentially increase our speculative
attack surface due to false negatives.

XI. CONCLUSION

We have shown that we can efficiently harden programs
against temporal and spatial (even speculative, a la Spectre-
BCB) info leak vulnerabilities, by using arenas to provide N-
color isolation. We have also demonstrated that our protection
can applied automatically by exploiting fine-grained type
information for object coloring.

Our type-based arena allocation on the heap and stack
has typical run-time overhead far below 5% and already
provides a strong mitigation against classical temporal and
linear (adjacent) spatial attacks. We significantly broaden this
protection by masking pointers to keep them in their intended
arena, mitigating non-adjacent and speculative vulnerabilities.
TDI still achieves acceptable run-time overhead by minimizing
the need to mask pointers. We believe this overhead could be
further improved with assistance from compiler frameworks.

13

ACKNOWLEDGEMENTS

We thank the anonymous reviewers, Koen Koning, and
Taddeus Kroes for their valuable feedback. This work was
supported by Intel Corporation through the Side Channel
Vulnerability ISRA, by the Netherlands Organisation for Sci-
entific Research through projects “TROPICS”, “Theseus”, and
“Vulcan”, by EKZ through project “VeriPatch”, by Cisco
Systems, Inc. through grant #1138109, and by the Office of
Naval Research (ONR) under awards N00014-16-1-2261 and
N00014-17-1-2788. This paper reflects only the authors’ view.
The funding agencies are not responsible for any use that may
be made of the information it contains.

REFERENCES

[1] “Google SafeSide,” https://github.com/google/safeside, September 2020.
[2] “Partitionalloc,” https://chromium.googlesource.com/chromium/src/+/

master/base/allocator/partition\ allocator/PartitionAlloc.md.
[3] “wrk2,” https://github.com/giltene/wrk2, September 2019.
[4] “WebAssembly Out of Bounds Trap Handling,” 2016.
[5] S. Ainsworth and T. M. Jones, “MarkUs: Drop-in use-after-free preven-

tion for low-level languages,” in S&P ’20.
[6] P. Akritidis, “Cling: A memory allocator to mitigate dangling pointers,”

in USENIX Security ’10.
[7] P. Akritidis, C. Cadar, C. Raiciu, M. Costa, and M. Castro, “Preventing

memory error exploits with wit,” in S&P ’08.
[8] P. Akritidis, M. Costa, M. Castro, and S. Hand, “Baggy bounds checking:

An efficient and backwards-compatible defense against out-of-bounds
errors.” in USENIX Security ’09.

[9] M. Barbar, Y. Sui, and S. Chen, “Flow-sensitive type-based heap
cloning,” in ECOOP ’20.

[10] E. Berger and B. Zorn, “DieHard: probabilistic memory safety for unsafe
languages,” in PLDI ’06.

[11] S. Bhatkar and R. Sekar, “Data space randomization,” in DIMVA ’08.
[12] A. Brahmakshatriya, P. Kedia, D. P. McKee, D. Garg, A. Lal, A. Rastogi,

H. Nemati, A. Panda, and P. Bhatu, “ConfLLVM: A compiler for
enforcing data confidentiality in low-level code,” in EuroSys ’19.

[13] N. Burow, D. McKee, S. A. Carr, and M. Payer, “CUP: Comprehensive
user-space protection for C/C++,” in AsiaCCS ’18.

[14] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. Von Berg, P. Ortner,
F. Piessens, D. Evtyushkin, and D. Gruss, “A systematic evaluation of
transient execution attacks and defenses,” in USENIX Security ’19.

[15] S. A. Carr and M. Payer, “Datashield: Configurable data confidentiality
and integrity,” in AsiaCCS ’17.

[16] C. Carruth, “Speculative load hardening,” July 2018.
[17] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing

data-flow integrity,” in OSDI ’06.
[18] X. Chen, A. Slowinska, D. Andriesse, H. Bos, and C. Giuffrida,

“Stackarmor: Comprehensive protection from stack-based memory error
vulnerabilities for binaries.” in NDSS ’15.

[19] D. Dhurjati and V. Adve, “Backwards-compatible array bounds checking
for c with very low overhead,” in Proceedings of the 28th international
conference on Software engineering.

[20] D. Dhurjati, S. Kowshik, and V. Adve, “SAFECode: enforcing alias
analysis for weakly typed languages,” in PLDI ’06.

[21] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner, “Memory safety
without garbage collection for embedded applications,” in TECS ’05.

[22] G. J. Duck and R. H. Yap, “EffectiveSan: type and memory error
detection using dynamically typed C/C++,” in PLDI ’18.

[23] ——, “Heap bounds protection with low fat pointers,” in CC ’16.
[24] U. Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula, “Xfi:

Software guards for system address spaces,” in OSDI ’06.
[25] S. Ghemawat and P. Menage, “TCMalloc: Thread-caching malloc,”

2009.
[26] M. Gretton-Dann, “Arm a-profile architecture developments 2018:

Armv8.5-a,” 2018.
[27] M. Guarnieri, B. Köpf, J. F. Morales, J. Reineke, and A. Sánchez,

“Spectector: Principled detection of speculative information flows,” in
S&P ’20.

[28] N. Hadad and J. Afek, “Overcoming (some) spectre
browser mitigations,” https://alephsecurity.com/2018/06/26/
spectre-browser-query-cache/, 2018.

[29] Intel, “Speculative execution side channel mitigations,” July 2018,
revision 3.0.

[30] I. R. Jenkins, P. Anantharaman, R. Shapiro, J. P. Brady, S. Bratus,
and S. W. Smith, “Ghostbusting: Mitigating Spectre with intraprocess
memory isolation,” in HoTSoS ’20.

[31] P. Kocher, “Spectre Mitigations in Microsoft’s C/C++ Compiler,” 2018.
[32] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-

burg, M. Lipp, S. Mangard, T. Prescher et al., “Spectre attacks: Exploit-
ing speculative execution,” in S&P ’19.

[33] K. Koning, X. Chen, H. Bos, C. Giuffrida, and E. Athanasopoulos,
“No need to hide: Protecting safe regions on commodity hardware,”
in EuroSys ’17.

[34] T. Kroes, K. Koning, E. van der Kouwe, H. Bos, and C. Giuffrida, “Delta
pointers: Buffer overflow checks without the checks,” in EuroSys ’18.

[35] J. A. Kroll, G. Stewart, and A. W. Appel, “Portable software fault iso-
lation,” in 2014 IEEE 27th Computer Security Foundations Symposium.

[36] V. Kuznetzov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in OSDI ’14.

[37] C. Lattner and V. Adve, “Automatic pool allocation: Improving perfor-
mance by controlling data structure layout in the heap,” in PLDI ’05.

[38] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia, “Thwarting memory
disclosure with efficient hypervisor-enforced intra-domain isolation,” in
CCS ’15.

[39] V. B. Lvin, G. Novark, E. D. Berger, and B. G. Zorn, “Archipelago:
trading address space for reliability and security,” in ASPLOS ’08.

[40] G. Maisuradze and C. Rossow, “Speculose: Analyzing the secu-
rity implications of speculative execution in cpus,” arXiv preprint
arXiv:1801.04084, 2018.

[41] S. McCamant and G. Morrisett, “Evaluating sfi for a cisc architecture,”
in USENIX Security ’06.

[42] R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and T. Verwaest, “Spectre
is here to stay: An analysis of side-channels and speculative execution,”
arXiv preprint arXiv:1902.05178, 2019.

[43] M. Miller, “Trends, challenges, and strategic shifts in the software
vulnerability mitigation landscape,” in BlueHat IL ’19.

[44] O. Moerbeek, “A new malloc (3) for openbsd,” in EuroBSDCon 2009.
[45] T. Mytkowicz, A. Diwan, M. Hauswirth, and P. F. Sweeney, “Producing

wrong data without doing anything obviously wrong!” in ASPLOS ’09.
[46] M. Neugschwandtner, A. Sorniotti, and A. Kurmus, “Memory catego-

rization: Separating attacker-controlled data,” in DIMVA ’19.
[47] G. Novark and E. D. Berger, “DieHarder: securing the heap,” in CCS

’10.
[48] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “Intel

MPX Explained: A Cross-layer Analysis of the Intel MPX System
Stack,” Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 2018.

[49] O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer, “Specfuzz:
Bringing spectre-type vulnerabilities to the surface,” in USENIX Security
’20.

[50] OpenSSL, “TLS heartbeat read overrun (CVE-2014-0160).”
[51] T. Palit, F. Monrose, and M. Polychronakis, “Mitigating data leakage by

protecting memory-resident sensitive data,” in ACSAC ’19.
[52] F. Pizlo, “What Spectre and Meltdown Mean For WebKit,” Jan 2018.
[53] S. Proskurin, M. Momeu, S. Ghavamnia, V. P. Kemerlis, and M. Poly-

chronakis, “xmp: Selective memory protection for kernel and user
space,” in S&P ’20.

[54] J. Rafkind, A. Wick, J. Regehr, and M. Flatt, “Precise garbage collection
for C,” in ISMM ’09.

[55] C. Reis, A. Moshchuk, and N. Oskov, “Site isolation: Process separation
for web sites within the browser,” in USENIX ’19.

[56] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and D. Gruss,
“ConTExT: A generic approach for mitigating Spectre,” in NDSS ’20.

[57] D. Sehr, R. Muth, C. L. Biffle, V. Khimenko, E. Pasko, B. Yee,
K. Schimpf, and B. Chen, “Adapting software fault isolation to con-
temporary cpu architectures,” 2010.

[58] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
sanitizer: A fast address sanity checker,” in Presented as part of the
2012 {USENIX} Annual Technical Conference ({USENIX}{ATC} 12),
2012, pp. 309–318.

[59] F. J. Serna, “The info leak era on software exploitation,” Black Hat USA,
2012.

14

[60] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in CCS ’07.

[61] S. Silvestro, H. Liu, C. Crosser, Z. Lin, and T. Liu, “Freeguard: A faster
secure heap allocator,” in CCS ’17.

[62] C. Song, B. Lee, K. Lu, W. Harris, T. Kim, and W. Lee, “Enforcing
kernel security invariants with data flow integrity.” in NDSS ’16.

[63] Y. Sui and J. Xue, “Svf: interprocedural static value-flow analysis in
llvm,” in CC ’16.

[64] B. L. Titzer and J. Sevcik, “A year with Spectre: a V8 perspective,” Apr
2019.

[65] A. Vahldiek-Oberwagner, E. Elnikety, N. O. Duarte, M. Sammler,
P. Druschel, and D. Garg, “ERIM: Secure, efficient in-process isolation
with protection keys (MPK),” in USENIX Security ’19.

[66] E. Van Der Kouwe, T. Kroes, C. Ouwehand, H. Bos, and C. Giuffrida,
“Type-after-type: Practical and complete type-safe memory reuse,” in
ACSAC ’18.

[67] S. Van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data load,”
in S&P ’19.

[68] M. Vassena, K. V. Gleissenthall, R. G. Kici, D. Stefan, and R. Jhala,
“Automatically eliminating speculative leaks from cryptographic code
with blade,” in POPL ’21.

[69] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in SOSP, 1993.

[70] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and A. Roychoud-
hury, “oo7: Low-overhead defense against spectre attacks via program
analysis,” IEEE Transactions on Software Engineering, 2019.

[71] B. Wickman, H. Hu, I. Y. D. Jang, J. L. S. Kashyap, and T. Kim, “Pre-
venting use-after-free attacks with fast forward allocation,” in USENIX
Security ’21.

[72] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native Client: A sandbox for
portable, untrusted x86 native code,” in S&P ’09.

[73] B. Zeng, G. Tan, and G. Morrisett, “Combining control-flow integrity
and static analysis for efficient and validated data sandboxing,” in CCS
’11.

[74] T. Zhang, D. Lee, and C. Jung, “Bogo: buy spatial memory safety, get
temporal memory safety (almost) free,” in ASPLOS ’19.

APPENDIX A
UNDEFINED POINTER ARITHMETIC IN SOFTWARE

Although TDI is compatible with a range of software, as
discussed in Section IX, it is still incompatible with software
which performs undefined pointer arithmetic and uses the
results across function boundaries. During testing, we found
such pointer arithmetic issues in several pieces of software.
We document these issues here to assist future researchers.

We discovered that CPU2006’s version of gcc stores out-
of-range pointers (pointing to before the start of the allocated
object) in global variables, which are later dereferenced by
other functions. Although TDI can handle pointers being
slightly out-of-bounds (see Section VI), the negative delta in
these cases is non-constant and can be quite large, resulting
in pointers being wrapped. We investigated and found two
pre-2006 gcc patches which remove these cases, in both cases
since they are undefined behavior; they are r62672 from 2003-
02-11, “Don’t use offset pointers.”, and r89543 from 2004-10-
25, “avoid undefined pointer arithmetic on qty table”.

The obstack code in CPU2017’s version of gcc stores cross-
object pointer deltas in a temporary variable inside a struct
allocated on the heap, which is undefined behavior. In fact, the
default behavior of the obstack code – including the version
in CPU2006’s gcc – is to avoid this by using a non-standard
C extension, where supported by the compiler. However, the
code in CPU2017 was modified by SPEC to disable the use

u_char *p;
ngx_http_geo_range_t **ranges;

ranges[i] = (ngx_http_geo_range_t *)
(p - (u_char *) fm.addr);

Listing 7: Simplified code example from nginx 1.18.0’s
ngx_http_geo_create_binary_base function.

of this code path. We re-enable it by removing the newly-
added !defined(SPEC) from obstack.h. Note that there
is other undefined behavior present in CPU2017 (such as
arithmetic using NULL pointers) which we resolve in our
canonicalization pass but present issues for upstream LLVM4.

CPU2016’s soplex uses a pointer delta to adjust pointers
after a call to realloc. We did not encounter this in our tested
configuration (since these objects are allocated in the same
arena), and patching it appears to be non-trivial and invasive.
This issue has also been observed by other researchers [48].

Both the CPU2006 and CPU2017 versions of perlbench
make use of cross-object delta calculation in the mergesort
code. Our pointer analysis correctly handles this for CPU2006,
but in CPU2017 we were forced to exclude the mergesort
function. TDI warns about these issues at compile time, along
with various other unexpected patterns in the code, such as
casting a 0x55555555 constant to a pointer.

We only encountered issues with a single CPU2000 bench-
mark, 254.gap, due to a custom allocator/garbage collector
(‘Gasman’) which would need to be modified to support
arena-based allocation. We excluded (when instrumenting)
the TypHandle struct (used by GAP’s ‘Gasman’ allocator/-
garbage collector,) as well as several functions.

nginx provides an illustrative example of arithmetic which
must be excluded, annotated or modified to be successfully
compiled with TDI. Our pass prints an error when trying to
instrument the http geo module of nginx, due to the code in
Listing 7, which subtracts a pointer from a pointer and stores
the result in an array of pointers (fm is a file mapping object;
we believe this code is trying to update the base address of an
array of pointers, and ranges should be a ptrdiff t*). Since the
base pointer cannot be determined, masking cannot be applied,
and compilation fails.

APPENDIX B
EVALUATION BUILD DETAILS

We applied patches to musl and libc++ to fix LTO issues
(such as removing weak symbols) and patched several bench-
marks to fix build issues (such as missing includes). We do not
instrument code which performs cross-arena arithmetic (e.g.,
ELF header parsing, vDSO support and stack unwinding); for
similar reasons, we do not instrument our allocator itself.

We needed to pass various compatibility flags and make
some minor source changes (e.g., including header files) to
make the SPEC benchmarks build in our environment. A

4https://lists.llvm.org/pipermail/llvm-dev/2017-July/115064.html

15

TABLE I
MODIFICATIONS APPLIED TO SPEC BENCHMARK CODE.

Software Reason Solution
CPU2000 gap Use of legacy termio Replaced with termios
CPU2000 gap Custom garbage col-

lector
Excluded type

CPU2006 gcc Undefined behavior
(negative offsets)

Applied (pre-2005) up-
stream patches

CPU2017 gcc Undefined behavior
(cross-arena deltas)

!defined(SPEC) re-
moved from obstack.h

CPU2017 perlbench Undefined behavior
(cross-arena deltas)

Excluded
S_mergesortsv

CPU2006 dealII Missing #include Added #include
CPU2017 xz >4GB allocation in

SPEC wrapper
Disable LTO for
spec_mem_io.c

summary of the (non-trivial) source changes can be seen in
Table I (together with the fixes for the issues described above).

APPENDIX C
POINTER DETECTION

While implementing TDI, we found that in real-world
programs, neither the types in the LLVM IR nor even the types
in the source code accurately reflect whether a value is used
as a pointer or not. As such, TDI requires pointer detection to
ensure all pointer dereferences are properly masked, and no
integers are corrupted by pointer masking. We describe our
design at a high level in Section IV-B, and include the details
here for transparency and reproducibility.

Our pointer detection classifies each value in the LLVM IR
as one of four groups: pointers, offsets, negated pointers, and
non-pointers. Additionally, during the analysis a value can be
classified as unknown or invalid. Initially, we consider every
value to be in the unknown class. Our analysis proceeds in four
steps that mark unknown-class values based on their usage,
starting with the usages that provide most confidence about
(non)pointer status. Each step is followed by forward and
backward propagation, marking those values that are used to
compute the newly marked values and those that are computed
from those values.

1) Marking: We perform marking in four steps: (1) We
first mark variables dereferenced in loads and stores (which
must therefore be pointers). (2) We mark function arguments
or return values based on types from the relevant function
prototypes. (3) We then mark values which are loaded/stored
based on the type of the pointer used. (4) Finally, we mark any
remaining unknown values based on their (LLVM IR) type.

After each of these marking steps, we propagate pointer
types both backwards and forwards. If we find that a value is
used as both a pointer and a non-pointer type, we mark it as
having a pointer type.

2) Propagation: We propagate pointer types through arith-
metic. We consider pointers which are used in shifts, divisions
and multiplications to be transformed beyond use, as with
AND operations discarding the high bits of a pointer, and mark
them as non-pointers. We perform some further analysis on
some specific arithmetic operations (and GEP instructions, in

LLVM IR). Pointers which are added (or otherwise combined,
e.g., ORed) to a non-pointer remain pointers.

If a pointer is subtracted from another pointer, it becomes
a non-pointer; if a pointer is subtracted from a non-pointer, it
becomes a negative pointer. If a negative pointer is added to
a pointer, then we can mark the result as a non-pointer. We
treat similar patterns in the same way; for example, we mark a
pointer XORed with a negative constant as a negative pointer.
We found this to be essential for analyzing both real-world C
code and the output of some LLVM transformations.

3) Base pointers: If an arithmetic operation is determined
to result in a pointer type, then we add it to a list of
potential pointer arithmetic operations, to be considered by the
remaining stages of our analysis. We then attempt to determine
the base pointer for each instance of such arithmetic. If only
one of the operands for an arithmetic operation is a pointer,
then we take that operand as the base pointer. If neither or
both operands are pointers, then we mark the base pointer as
invalid. We found this last case to occur in code calculating
pointer hashes, or in control flow paths with unused results.

However, we do not remove these invalid instances of arith-
metic from the list of potential pointer arithmetic operations;
we later output a warning if we conclude that such arithmetic
should be masked. Although such situations are rare, they
do occur; an example can be found in Appendix A. During
evaluation, we erred on the side of caution, producing an error
rather than a warning, and manually annotated 4 cases which
could encounter this error in some build configurations.

APPENDIX D
ADDITIONAL RESULTS

0% 5% 10% 15% 20% 25% 30% 35%

perlbench
bzip2

gcc
mcf
milc

namd
gobmk
dealII

soplex
povray
hmmer

sjeng
libquantum

h264ref
lbm

omnetpp
astar

sphinx3
xalancbmk

Fig. 9. CPU2006 (peak) memory overhead

16

0% 20% 40% 60% 80% 100% 120% 140% 160% 180%

perlbench
bzip2

gcc
mcf
milc

namd
gobmk
dealII

soplex
povray
hmmer

sjeng
libquantum

h264ref
lbm

omnetpp
astar

sphinx3
xalancbmk

SLH
Full protection

Fig. 10. CPU2006 runtime overhead vs SLH (xalancbmk is 405%)

0% 5% 10% 15% 20% 25% 30% 35% 40% 45%

perlbench
bzip2

gcc
mcf
milc

namd
gobmk
dealII

soplex
povray
hmmer

sjeng
libquantum

h264ref
lbm

omnetpp
astar

sphinx3
xalancbmk

No stores
No dominator analysis
Full protection

Fig. 11. CPU2006 runtime overhead with alternative configurations

0% 10% 20% 30% 40% 50%

perlbench
bzip2

gcc
mcf
milc

namd
gobmk
dealII

soplex
povray
hmmer

sjeng
libquantum

h264ref
lbm

omnetpp
astar

sphinx3
xalancbmk

Full protection (w/musl)

Fig. 12. CPU2006 runtime overhead with instrumented musl/libc++

APPENDIX E
ARENA STATISTICS

The number of arenas actually allocated at runtime is the
sum of the stack and heap arenas column in Table II.

0% 10% 20% 30% 40%

perlbench_s
gcc_s
mcf_s
lbm_s

omnetpp_s
xalancbmk_s

x264_s
deepsjeng_s

imagick_s
leela_s
nab_s

xz_s
Full protection (w/musl)

Fig. 13. CPU2017 runtime overhead with instrumented musl/libc++

TABLE II
ARENA ALLOCATION STATISTICS FOR SPEC CPU2000 AND CPU2006

BENCHMARKS (INCL. MUSL/LIBC++).

Benchmark Stack
arenas

Heap
arenas1

Heap
type IDs2

Heap call-
site IDs2

164.gzip 36 9 9 22
175.vpr 45 39–70 33 66
176.gcc 66 21 21 251
177.mesa 38 23 47 31
179.art 33 10 13 19
181.mcf 34 7 10 18
183.equake 34 9 12 18
186.crafty 35 8 10 20
188.ammp 37 15 23 18
197.parser 36 6 8 19
252.eon 68 42 30 81
253.perlbmk 52 60 22 148
254.gap 38 6 8 21
255.vortex 53 9 8 24
256.bzip2 36 11 10 22
300.twolf 34 87 37 94
400.perlbench 59 69–80 28 222
401.bzip2 35 10 9 23
403.gcc 110 192–198 98 414
429.mcf 34 7 10 18
433.milc 39 15 17 29
444.namd 40 17 12 35
445.gobmk 47 15 17 20
447.dealII 116 135 66 252
450.soplex 66 90–95 25 202
453.povray 66 98 79 147
456.hmmer 40 34–50 30 139
458.sjeng 36 8 12 18
462.libquantum 36 8 12 19
464.h264ref 37 50–53 43 37
470.lbm 33 7 8 20
471.omnetpp 55 88 61 1200
473.astar 37 33 15 40
482.sphinx3 40 98 47 95
483.xalancbmk 186 200 212 1764
1 The number of heap arena IDs used (at least one object allo-

cated) at runtime; this is specified as a range where some sub-
benchmarks allocate objects in fewer arenas.

2 The number of heap types and/or heap callsites (i.e., untyped)
assigned unique arena IDs at compile time. The total number of
potential heap arena IDs is the sum of these two columns.

17

